
1

Report for: Re-engineering, securing and decommissioning software

Name: Jamie Cropley

P Number: P15188432

Module: IMAT2605 - Object Oriented Design and Development with C++

For attention of: Peter Cooke / Rafael Ktistakis

Date: 09/01/2017

Summary:

This report entails the re-design of the provided software which is a Connect4 game, it

is played by means of two players connecting through a server remotely to play each

other over a networked connection.

This report also investigates the issues with the software especially that of security

issues, then re-designs such issues using an object orientated programming approach

in the formation of a UML Diagram design involving redesigned classes containing

methods and attributes.

Additionally, from a hypothetical context the report explains the process of

decommissioning the existing software and implementing the new software, and

explains the problems with this along with proposed solutions.

Page count:

Page count does not include Sections 4 and 7, and this page therefore total pages = 6

Contents:

Heading Number Heading Title Page Number

1 Introduction 2

2 Planning 3

3 Security - Risks 4

3.1 Security - Mitigation 5

4 UML 6

5 Transition 7

6 Conclusion 8

7 Bibliography 9

2

1 Introduction

This report is needed to outline, plan, analyse and re-structure in a UML diagram the

coursework software provided which is a game of Connect 4 which can be played by

two players over a formation of a computer network by means of client server

client. Although most of my background knowledge is in C++ the coursework software is

written in C therefore rewriting in terms of the UML diagram towards an Object

Orientated Programming (OOP) approach is essential.

I am aiming to do this through the objectives outlined in the course spec and the

contents of this report, especially in terms of what I can improve in the software with the

security elements of it, I believe these are of the most importance to the software

becoming better improved because the software is being used over a network. My aims

and objectives will therefore mainly revolve around the security aspects of the software

and how I go about improving them throughout this report.

I plan to achieve this through planning which would involve me going into some detail of

the choices I will make on my Object Orientated design, then go onto the analysis of the

existing security issues with the software and how I can improve such issues. Then I

would detail my changes in the form of a redesign of the software via a UML based

OOP type diagram, where this should also help with the decommissioning and transition

into the new software.

3

2 Planning

My first initial thoughts on the software were that it was split into two projects where one

project is the client and one is the server. From briefly overlooking the file structure and

compiling such files, it was apparent to me from the onset that most of security issues

most likely arisen from the server and that the client was going to be easier to organise

in terms of OOP on a UML diagram as it had a more organised file structure where the

code was separated out into various separate files and functions whilst the server just

consisted of one source code file all within in one function.

My initial plan was to compile the files for the server and the client in the software and

hope for some errors to come up in the debugger in visual studio 2015 along with

obvious security issues and where I noticed obvious errors and security issues I would

divide these into separate classes in terms of Object Orientated Programming and such

in the form of a UML diagram for my proposed redesign. However, this was not doable,

as I had no errors come up in the visual studio debugger when I compiled both the

server and the client.

Now my plan is going forward is to find such security issues detailed in section 3 of this

report in a more abstract and lateral way and perhaps using different software to

analyse all the code part by part to see exactly what it is doing and exactly where it is

flawed. I decided to focus on the security aspects the most in terms of the UML

redesign because firstly I think this would be the most important in terms of a client to

server and server to client software base, additionally when I ran the code I could

clearly see there were no encryption at all what so ever which leads me to believe this

area of the software is worth investigating further and thus redesigning in terms of a

UML and towards the Object Oriented design of the software, additionally going this in

depth into the code of the client and server should hopefully help me to find other issues

with the code in terms of the redesign and improving it overall.

4

3 Security - Risks

To initially discover the security risks within this software I initially thought about it in a

simplistic way, the software is made up of a client and server therefore data is being

passed between the client and the server, the information that is being passed is of

importance in terms of privacy, for example an IP address of the user and the server,

the game moves and its data therein, none of these kinds of data show any form of

encryption at all throughout the code which is of great risk to the user, especially the IP

address which can be used to perform all sorts of different types of attacks on their

computer. Session hijacking was also something that caused some concern for me in

terms of a man in the middle attack, this could be prevented if more than 3 IP’s are

being used throughout additionally with a secure password at both ends for each move.

I then thought about it in a secure programming context in terms of the C programming

language, where the most common type of security issue found in this programming

language is buffer overflow, this was made obvious to me from the start where I could

see that strings were passed to the type of char causing buffer overflows throughout the

code files network.c and main.c (server only)

I then used a piece of software called Flawfinder on Linux/MacOS terminal to analyse

the entirety of all the code files to confirm my initial impressions of the code, I did it on

all files but network.c and main.c (server only) where the only ones which confirmed that

there were buffer overflows throughout these files. This would be of a concern in a

security context because this allows for that of a malicious hacker to purposely conduct

such a buffer overflow attack, allowing them to inject their own code or sets of

instructions into the buffer which then just wait for it to be called again by the user

before executing.

Overall the following security issues with the client and server software need to be

considered throughout my UML redesign amongst every code file and when attempting

to mitigate such issues:

• Unencrypted data:

o Player moves.

o IP address of users and server.

o General data about the game.

• Session hijacking, man in the middle attack

• Buffer overflow attacks.

5

3.1 Security – Mitigation

Below is an overview of OOP design and classes for the client and server:

 Classes are in their detailed form Classes names are

1 Encrypt important data throughout the software and
make it require an encryption/cryptographic key.

Encryption

2 Important data that is prevalent throughout gameplay Game Data

3 Session hijacking / man in the middle attack prevention. MitM Prevention

4 Prevention of Buffer overflow attack’s. Buffer Overflow
Prevention

Each class will contain the following attributes and types for the client and server:

Name of
class:

Attribute name: Type: Reason for type: Public,
Private or
protected:

Encryption key string Mixture of characters protected

Game
Data

yellowPlayerMove int Can store relative to
grid coordinates

protected

redPlayerMove Int protected

ipAddressRed string Not actually used to
calculate anything.

protected

ipAddressYellow string protected

ipAddressServer string protected

passwordForMoves string Mixture of characters protected

Buffer
Overflow
Prevention

sendBuffer string Type string manages
own memory as
opposed to type char.

private

receiveBuffer string private

MitM
Prevention

ipStore int IP addresses via
client 1 & 2 and
server = 3 (!=>3)

private

The above information should suffice for me to decide upon the overall UML design and

its appropriate methods therein, therefore giving me a starting template to manipulate,

and add to aspects like methods, objects etc… on an ongoing basis if need be.

6

4 UML

Below is the overall UML diagram which exhibits the classes respective to security

mitigation.

The above diagram shows implemented methods as follows:

Method Reason for Method

encryptData Encrypts data

decryptData Decrypts data

encryptedData For handling encrypted data

checkPasswordForMoves Asks each player for a password

checkIPStore Checks there is no more than 3 ip addresses throughout
the software

boolOverallCheck Contains a sort of program that would change a bool to
true if ip addresses are no more than 3 and both players
have entered the correct password.

7

5 Transition

When decommissioning a piece of software there is usually a lot to consider especially

in respect of the users. With this software, it would most likely not be used in a business

environment with it being a game however things like costs and usability would still

come into it. For this decommissioning scenario, I will explain the transition to the new

software / game in a business context however because I believe this gives a more

structured approach to implementing it.

The biggest issue I believe I would find initially with the users of this, would be them

using the new software, therefore perhaps a policy, agreement or indication to them

before they use it would suffice in terms of educating them about computer security and

how the new version utilises new and better security methods better thus helps to

protect their private and personal data. The biggest change to the software is its

security therefore I believe this would be the best area to focus on in terms of changing

over the software and decommissioning the old version of it.

With the new implementation of this software, it begins to go towards a more Object

Orientated Design in terms of how it is coded therefore when changing the software

over to the new version, if anyone who begins to keep the code up to date and maintain

it especially in terms of security and compatibility, would need to be knowledgeable of

Object Orientated Programming to prevent the possibility of creating accidental new

security flaws and bugs.

The software usage most likely will need to be monitored initially to ensure that the

users have no trouble with it, and that the security flaws are corrected and improved.

Additionally, it is highly possible although the person coding my design may not find any

bugs its highly likely that the more people who use the software the more chance there

is of them finding bugs in the software, for example a user might click somewhere on

the screen that no one has ever clicked before including the designer and myself thus

finding a new bug that would be need to be investigated further and fixed.

Overall the initial functionality of the old vs the new application remains the same with

the only key differences being of its new security features, the only thing affecting the

user in terms of change would be need of a password for their initial moves to confirm

validity of their machine in terms of the IP address.

8

6 Conclusion

I have redesigned the elements of this software that needed improving the most in

terms of security flaws that I found throughout the client and the server. I found that

there were 3 main areas of concern when it came to security which were data being

publically available and non-encrypted, a man in the middle attack being able to be

performed easily and a few buffer overflow errors.

Although the buffer overflow errors were obvious from the onset, I had to think about the

other issues laterally in terms of a client and server and how they interact with each

then by looking through the code and running it to confirm my findings.

I redesigned these elements towards an Object Orientated approach, by specifying 4

different classes, each class contained attributes and methods that were related to the

improvement of the security software features.

Overall this allowed for a quicker and more effective way to deal with these security

issues as well as allowing for any necessary future updates to be carried out in a much

easier and understandable way.

9

7 Bibliography

(2017) Buffer Overflow. [Online] Webopedia. Available from:

http://www.webopedia.com/TERM/B/buffer_overflow.html [Accessed 09/01/2017].

http://www.webopedia.com/TERM/B/buffer_overflow.html

